ADD FLASH(flash.h flash.cpp flash_def.h flash_cfg.h flash_sfdp.cpp)

ADD RunTimer(log.h ticks.h ticks.cpp)
ADD sim_key form sdl
This commit is contained in:
JiXieShi
2024-11-27 13:49:34 +08:00
parent 8f7f72712c
commit a1176112ce
29 changed files with 3993 additions and 179 deletions

1038
lib/flash/flash.cpp Normal file

File diff suppressed because it is too large Load Diff

359
lib/flash/flash_sfdp.cpp Normal file
View File

@@ -0,0 +1,359 @@
#include "flash.h"
/**
* JEDEC Standard JESD216 Terms and definitions:
*
* DWORD: Four consecutive 8-bit bytes used as the basic 32-bit building block for headers and parameter tables.
*
* Sector: The minimum granularity - size and alignment - of an area that can be erased in the data array
* of a flash memory device. Different areas within the address range of the data array may have a different
* minimum erase granularity (sector size).
*/
#ifdef FLASH_USING_SFDP
/* support maximum SFDP major revision by driver */
#define SUPPORT_MAX_SFDP_MAJOR_REV 1
/* the JEDEC basic flash parameter table length is 9 DWORDs (288-bit) on JESD216 (V1.0) initial release standard */
#define BASIC_TABLE_LEN 9
/* the smallest eraser in SFDP eraser table */
#define SMALLEST_ERASER_INDEX 0
/**
* SFDP parameter header structure
*/
typedef struct {
uint8_t id; /**< Parameter ID LSB */
uint8_t minor_rev; /**< Parameter minor revision */
uint8_t major_rev; /**< Parameter major revision */
uint8_t len; /**< Parameter table length(in double words) */
uint32_t ptp; /**< Parameter table 24bit pointer (byte address) */
} sfdp_para_header;
static flash_err read_sfdp_data(const FLASH_t *flash, uint32_t addr, uint8_t *read_buf, size_t size);
static bool read_sfdp_header(FLASH_t *flash);
static bool read_basic_header(const FLASH_t *flash, sfdp_para_header *basic_header);
static bool read_basic_table(FLASH_t *flash, sfdp_para_header *basic_header);
extern void flash_log_debug(const char *file, const long line, const char *format, ...);
extern void flash_log_info(const char *format, ...);
/**
* Read SFDP parameter information
*
* @param flash flash device
*
* @return true: read OK
*/
bool flash_read_sfdp(FLASH_t *flash) {
FLASH_ASSERT(flash);
/* JEDEC basic flash parameter header */
sfdp_para_header basic_header;
if (read_sfdp_header(flash) && read_basic_header(flash, &basic_header)) {
return read_basic_table(flash, &basic_header);
} else {
FLASH_INFO("Warning: Read SFDP parameter header information failed. The %s does not support JEDEC SFDP.",
flash->name);
return false;
}
}
/**
* Read SFDP parameter header
*
* @param flash flash device
*
* @return true: read OK
*/
static bool read_sfdp_header(FLASH_t *flash) {
flash_sfdp *sfdp = &flash->sfdp;
/* The SFDP header is located at address 000000h of the SFDP data structure.
* It identifies the SFDP Signature, the number of parameter headers, and the SFDP revision numbers. */
/* sfdp parameter header address */
uint32_t header_addr = 0;
/* each parameter header being 2 DWORDs (64-bit) */
uint8_t header[2 * 4] = {0};
FLASH_ASSERT(flash);
sfdp->available = false;
/* read SFDP header */
if (read_sfdp_data(flash, header_addr, header, sizeof(header)) != FLASH_SUCCESS) {
FLASH_INFO("Error: Can't read SFDP header.");
return false;
}
/* check SFDP header */
if (!(header[0] == 'S' &&
header[1] == 'F' &&
header[2] == 'D' &&
header[3] == 'P')) {
FLASH_DEBUG("Error: Check SFDP signature error. It's must be 50444653h('S' 'F' 'D' 'P').");
return false;
}
sfdp->minor_rev = header[4];
sfdp->major_rev = header[5];
if (sfdp->major_rev > SUPPORT_MAX_SFDP_MAJOR_REV) {
FLASH_INFO("Error: This reversion(V%d.%d) of SFDP is not supported.", sfdp->major_rev, sfdp->minor_rev);
return false;
}
FLASH_DEBUG("Check SFDP header is OK. The reversion is V%d.%d, NPN is %d.", sfdp->major_rev, sfdp->minor_rev,
header[6]);
return true;
}
/**
* Read JEDEC basic parameter header
*
* @param flash flash device
*
* @return true: read OK
*/
static bool read_basic_header(const FLASH_t *flash, sfdp_para_header *basic_header) {
/* The basic parameter header is mandatory, is defined by this standard, and starts at byte offset 08h. */
uint32_t header_addr = 8;
/* each parameter header being 2 DWORDs (64-bit) */
uint8_t header[2 * 4] = {0};
FLASH_ASSERT(flash);
FLASH_ASSERT(basic_header);
/* read JEDEC basic flash parameter header */
if (read_sfdp_data(flash, header_addr, header, sizeof(header)) != FLASH_SUCCESS) {
FLASH_INFO("Error: Can't read JEDEC basic flash parameter header.");
return false;
}
basic_header->id = header[0];
basic_header->minor_rev = header[1];
basic_header->major_rev = header[2];
basic_header->len = header[3];
basic_header->ptp = (long) header[4] | (long) header[5] << 8 | (long) header[6] << 16;
/* check JEDEC basic flash parameter header */
if (basic_header->major_rev > SUPPORT_MAX_SFDP_MAJOR_REV) {
FLASH_INFO("Error: This reversion(V%d.%d) of JEDEC basic flash parameter header is not supported.",
basic_header->major_rev, basic_header->minor_rev);
return false;
}
if (basic_header->len < BASIC_TABLE_LEN) {
FLASH_INFO("Error: The JEDEC basic flash parameter table length (now is %d) error.", basic_header->len);
return false;
}
FLASH_DEBUG("Check JEDEC basic flash parameter header is OK. The table id is %d, reversion is V%d.%d,"
" length is %d, parameter table pointer is 0x%06lX.", basic_header->id, basic_header->major_rev,
basic_header->minor_rev, basic_header->len, basic_header->ptp);
return true;
}
/**
* Read JEDEC basic parameter table
*
* @param flash flash device
*
* @return true: read OK
*/
static bool read_basic_table(FLASH_t *flash, sfdp_para_header *basic_header) {
flash_sfdp *sfdp = &flash->sfdp;
/* parameter table address */
uint32_t table_addr = basic_header->ptp;
/* parameter table */
uint8_t table[BASIC_TABLE_LEN * 4] = {0}, i, j;
FLASH_ASSERT(flash);
FLASH_ASSERT(basic_header);
/* read JEDEC basic flash parameter table */
if (read_sfdp_data(flash, table_addr, table, sizeof(table)) != FLASH_SUCCESS) {
FLASH_INFO("Warning: Can't read JEDEC basic flash parameter table.");
return false;
}
/* print JEDEC basic flash parameter table info */
FLASH_DEBUG("JEDEC basic flash parameter table info:");
FLASH_DEBUG("MSB-LSB 3 2 1 0");
for (i = 0; i < BASIC_TABLE_LEN; i++) {
FLASH_DEBUG("[%04d] 0x%02X 0x%02X 0x%02X 0x%02X", i + 1, table[i * 4 + 3], table[i * 4 + 2], table[i * 4 + 1],
table[i * 4]);
}
/* get block/sector 4 KB erase supported and command */
sfdp->erase_4k_cmd = table[1];
switch (table[0] & 0x03) {
case 1:
sfdp->erase_4k = true;
FLASH_DEBUG("4 KB Erase is supported throughout the device. Command is 0x%02X.", sfdp->erase_4k_cmd);
break;
case 3:
sfdp->erase_4k = false;
FLASH_DEBUG("Uniform 4 KB erase is unavailable for this device.");
break;
default:
FLASH_INFO("Error: Uniform 4 KB erase supported information error.");
return false;
}
/* get write granularity */
//TODO 目前为 1.0 所提供的方式,后期支持 V1.5 及以上的方式读取 page size
switch ((table[0] & (0x01 << 2)) >> 2) {
case 0:
sfdp->write_gran = 1;
FLASH_DEBUG("Write granularity is 1 byte.");
break;
case 1:
sfdp->write_gran = 256;
FLASH_DEBUG("Write granularity is 64 bytes or larger.");
break;
}
/* volatile status register block protect bits */
switch ((table[0] & (0x01 << 3)) >> 3) {
case 0:
/* Block Protect bits in device's status register are solely non-volatile or may be
* programmed either as volatile using the 50h instruction for write enable or non-volatile
* using the 06h instruction for write enable.
*/
sfdp->sr_is_non_vola = true;
FLASH_DEBUG("Target flash status register is non-volatile.");
break;
case 1:
/* block protect bits in device's status register are solely volatile. */
sfdp->sr_is_non_vola = false;
FLASH_DEBUG("Block Protect bits in device's status register are solely volatile.");
/* write enable instruction select for writing to volatile status register */
switch ((table[0] & (0x01 << 4)) >> 4) {
case 0:
sfdp->vola_sr_we_cmd = FLASH_VOLATILE_SR_WRITE_ENABLE;
FLASH_DEBUG("Flash device requires instruction 50h as the write enable prior "
"to performing a volatile write to the status register.");
break;
case 1:
sfdp->vola_sr_we_cmd = FLASH_CMD_WRITE_ENABLE;
FLASH_DEBUG("Flash device requires instruction 06h as the write enable prior "
"to performing a volatile write to the status register.");
break;
}
break;
}
/* get address bytes, number of bytes used in addressing flash array read, write and erase. */
switch ((table[2] & (0x03 << 1)) >> 1) {
case 0:
sfdp->addr_3_byte = true;
sfdp->addr_4_byte = false;
FLASH_DEBUG("3-Byte only addressing.");
break;
case 1:
sfdp->addr_3_byte = true;
sfdp->addr_4_byte = true;
FLASH_DEBUG("3- or 4-Byte addressing.");
break;
case 2:
sfdp->addr_3_byte = false;
sfdp->addr_4_byte = true;
FLASH_DEBUG("4-Byte only addressing.");
break;
default:
sfdp->addr_3_byte = false;
sfdp->addr_4_byte = false;
FLASH_INFO("Error: Read address bytes error!");
return false;
}
/* get flash memory capacity */
uint32_t table2_temp = ((long) table[7] << 24) | ((long) table[6] << 16) | ((long) table[5] << 8) | (long) table[4];
switch ((table[7] & (0x01 << 7)) >> 7) {
case 0:
sfdp->capacity = 1 + (table2_temp >> 3);
break;
case 1:
table2_temp &= 0x7FFFFFFF;
if (table2_temp > sizeof(sfdp->capacity) * 8 + 3) {
sfdp->capacity = 0;
FLASH_INFO("Error: The flash capacity is grater than 32 Gb/ 4 GB! Not Supported.");
return false;
}
sfdp->capacity = 1L << (table2_temp - 3);
break;
}
FLASH_DEBUG("Capacity is %ld Bytes.", sfdp->capacity);
/* get erase size and erase command */
for (i = 0, j = 0; i < FLASH_SFDP_ERASE_TYPE_MAX_NUM; i++) {
if (table[28 + 2 * i] != 0x00) {
sfdp->eraser[j].size = 1L << table[28 + 2 * i];
sfdp->eraser[j].cmd = table[28 + 2 * i + 1];
FLASH_DEBUG("Flash device supports %ldKB block erase. Command is 0x%02X.", sfdp->eraser[j].size / 1024,
sfdp->eraser[j].cmd);
j++;
}
}
/* sort the eraser size from small to large */
for (i = 0, j = 0; i < FLASH_SFDP_ERASE_TYPE_MAX_NUM; i++) {
if (sfdp->eraser[i].size) {
for (j = i + 1; j < FLASH_SFDP_ERASE_TYPE_MAX_NUM; j++) {
if (sfdp->eraser[j].size != 0 && sfdp->eraser[i].size > sfdp->eraser[j].size) {
/* swap the small eraser */
uint32_t temp_size = sfdp->eraser[i].size;
uint8_t temp_cmd = sfdp->eraser[i].cmd;
sfdp->eraser[i].size = sfdp->eraser[j].size;
sfdp->eraser[i].cmd = sfdp->eraser[j].cmd;
sfdp->eraser[j].size = temp_size;
sfdp->eraser[j].cmd = temp_cmd;
}
}
}
}
sfdp->available = true;
return true;
}
static flash_err read_sfdp_data(const FLASH_t *flash, uint32_t addr, uint8_t *read_buf, size_t size) {
uint8_t cmd[] = {
FLASH_CMD_READ_SFDP_REGISTER,
(uint8_t) ((addr >> 16) & 0xFF),
(uint8_t) ((addr >> 8) & 0xFF),
(uint8_t) ((addr >> 0) & 0xFF),
FLASH_DUMMY_DATA,
};
FLASH_ASSERT(flash);
FLASH_ASSERT(addr < 1L << 24);
FLASH_ASSERT(read_buf);
FLASH_ASSERT(flash->spi.wr);
return flash->spi.wr(&flash->spi, cmd, sizeof(cmd), read_buf, size);
}
/**
* get the most suitable eraser for erase process from SFDP parameter
*
* @param flash flash device
* @param addr start address
* @param erase_size will be erased size
*
* @return the eraser index of SFDP eraser table @see flash_sfdp.eraser[]
*/
size_t flash_sfdp_get_suitable_eraser(const FLASH_t *flash, uint32_t addr, size_t erase_size) {
size_t index = SMALLEST_ERASER_INDEX, i;
/* only used when flash supported SFDP */
FLASH_ASSERT(flash->sfdp.available);
/* the address isn't align by smallest eraser's size, then use the smallest eraser */
if (addr % flash->sfdp.eraser[SMALLEST_ERASER_INDEX].size) {
return SMALLEST_ERASER_INDEX;
}
/* Find the suitable eraser.
* The largest size eraser is at the end of eraser table.
* In order to decrease erase command counts, so the find process is from the end of eraser table. */
for (i = FLASH_SFDP_ERASE_TYPE_MAX_NUM - 1;; i--) {
if ((flash->sfdp.eraser[i].size != 0) && (erase_size >= flash->sfdp.eraser[i].size)
&& (addr % flash->sfdp.eraser[i].size == 0)) {
index = i;
break;
}
if (i == SMALLEST_ERASER_INDEX) {
break;
}
}
return index;
}
#endif /* FLASH_USING_SFDP */

208
lib/flash/inc/flash.h Normal file
View File

@@ -0,0 +1,208 @@
//
// Created by lydxh on 24-11-27.
//
#ifndef HW_LIB_FLASH_H
#define HW_LIB_FLASH_H
#include <stdio.h>
#include <stdlib.h>
#include <stdint.h>
#include <stdbool.h>
#include <flash_cfg.h>
#include "flash_def.h"
#ifdef __cplusplus
extern "C" {
#endif
/* debug print function. Must be implement by user. */
#ifdef FLASH_DEBUG_MODE
#ifndef FLASH_DEBUG
#define FLASH_DEBUG(...) flash_log_debug(__FILE__, __LINE__, __VA_ARGS__)
#endif /* FLASH_DEBUG */
#else
#define FLASH_DEBUG(...)
#endif /* FLASH_DEBUG_MODE */
#ifndef FLASH_INFO
#define FLASH_INFO(...) flash_log_info(__VA_ARGS__)
#endif
/* assert for developer. */
#ifdef FLASH_DEBUG_MODE
#define FLASH_ASSERT(EXPR) \
if (!(EXPR)) \
{ \
FLASH_DEBUG("(%s) has assert failed at %s.", #EXPR, __FUNCTION__); \
while (1); \
}
#else
#define FLASH_ASSERT(EXPR)
#endif
typedef struct FLASH_Dev FLASH_t;
struct FLASH_Dev {
char *name; /**< serial flash name */
size_t index; /**< index of flash device information table @see flash_table */
flash_chip chip; /**< flash chip information */
flash_spi spi; /**< SPI device */
bool init_ok; /**< initialize OK flag */
bool addr_in_4_byte; /**< flash is in 4-Byte addressing */
struct {
void (*delay)(void); /**< every retry's delay */
size_t times; /**< default times for error retry */
} retry;
void *user_data; /**< some user data */
#ifdef FLASH_USING_QSPI
flash_qspi_read_cmd_format read_cmd_format; /**< fast read cmd format */
#endif
#ifdef FLASH_USING_SFDP
flash_sfdp sfdp; /**< serial flash discoverable parameters by JEDEC standard */
#endif
};
/**
* FLASH library initialize.
*
* @return result
*/
flash_err flash_init(void);
/**
* FLASH initialize by flash device
*
* @param flash flash device
*
* @return result
*/
flash_err flash_device_init(FLASH_t *flash);
/**
* get flash device by its index which in the flash information table
*
* @param index the index which in the flash information table @see flash_table
*
* @return flash device
*/
FLASH_t *flash_get_device(size_t index);
/**
* get flash device total number on flash device information table @see flash_table
*
* @return flash device total number
*/
size_t flash_get_device_num(void);
/**
* get flash device information table @see flash_table
*
* @return flash device table pointer
*/
const FLASH_t *flash_get_device_table(void);
#ifdef FLASH_USING_QSPI
/**
* Enbale the fast read mode in QSPI flash mode. Default read mode is normal SPI mode.
*
* it will find the appropriate fast-read instruction to replace the read instruction(0x03)
* fast-read instruction @see FLASH_FLASH_EXT_INFO_TABLE
*
* @note When Flash is in QSPI mode, the method must be called after flash_device_init().
*
* @param flash flash device
* @param data_line_width the data lines max width which QSPI bus supported, such as 1, 2, 4
*
* @return result
*/
flash_err flash_qspi_fast_read_enable(FLASH_t *flash, uint8_t data_line_width);
#endif /* FLASH_USING_QSPI */
/**
* read flash data
*
* @param flash flash device
* @param addr start address
* @param size read size
* @param data read data pointer
*
* @return result
*/
flash_err flash_read(const FLASH_t *flash, uint32_t addr, size_t size, uint8_t *data);
/**
* erase flash data
*
* @note It will erase align by erase granularity.
*
* @param flash flash device
* @param addr start address
* @param size erase size
*
* @return result
*/
flash_err flash_erase(const FLASH_t *flash, uint32_t addr, size_t size);
/**
* write flash data (no erase operate)
*
* @param flash flash device
* @param addr start address
* @param data write data
* @param size write size
*
* @return result
*/
flash_err flash_write(const FLASH_t *flash, uint32_t addr, size_t size, const uint8_t *data);
/**
* erase and write flash data
*
* @param flash flash device
* @param addr start address
* @param size write size
* @param data write data
*
* @return result
*/
flash_err flash_erase_write(const FLASH_t *flash, uint32_t addr, size_t size, const uint8_t *data);
/**
* erase all flash data
*
* @param flash flash device
*
* @return result
*/
flash_err flash_chip_erase(const FLASH_t *flash);
/**
* read flash register status
*
* @param flash flash device
* @param status register status
*
* @return result
*/
flash_err flash_read_status(const FLASH_t *flash, uint8_t *status);
/**
* write status register
*
* @param flash flash device
* @param is_volatile true: volatile mode, false: non-volatile mode
* @param status register status
*
* @return result
*/
flash_err flash_write_status(const FLASH_t *flash, bool is_volatile, uint8_t status);
#ifdef __cplusplus
}
#endif
#endif //HW_LIB_FLASH_H

27
lib/flash/inc/flash_cfg.h Normal file
View File

@@ -0,0 +1,27 @@
//
// Created by lydxh on 24-11-27.
//
#ifndef HW_LIB_FLASH_CFG_H
#define HW_LIB_FLASH_CFG_H
#define FLASH_DEBUG_MODE
#define FLASH_USING_SFDP
// #define FLASH_USING_FAST_READ
#define FLASH_USING_FLASH_INFO_TABLE
enum {
FLASH_XXXX_DEVICE_INDEX = 0,
};
#define FLASH_FLASH_DEVICE_TABLE \
{ \
[FLASH_XXXX_DEVICE_INDEX] = {.name = "XXXX", .spi.name = "SPIX"}, \
}
#define FLASH_USING_QSPI
#endif //HW_LIB_FLASH_CFG_H

406
lib/flash/inc/flash_def.h Normal file
View File

@@ -0,0 +1,406 @@
//
// Created by lydxh on 24-11-27.
//
#ifndef HW_LIB_FLASH_DEF_H
#define HW_LIB_FLASH_DEF_H
#include <stdint.h>
#include <flash_cfg.h>
#ifdef __cplusplus
extern "C" {
#endif
/**
* flash program(write) data mode
*/
enum flash_write_mode {
FLASH_WM_PAGE_256B = 1 << 0, /**< write 1 to 256 bytes per page */
FLASH_WM_BYTE = 1 << 1, /**< byte write */
FLASH_WM_AAI = 1 << 2, /**< auto address increment */
FLASH_WM_DUAL_BUFFER = 1 << 3, /**< dual-buffer write, like AT45DB series */
};
/* manufacturer information */
typedef struct {
char *name;
uint8_t id;
} flash_mf;
/* flash chip information */
typedef struct {
char *name; /**< flash chip name */
uint8_t mf_id; /**< manufacturer ID */
uint8_t type_id; /**< memory type ID */
uint8_t capacity_id; /**< capacity ID */
uint32_t capacity; /**< flash capacity (bytes) */
uint16_t write_mode; /**< write mode @see flash_write_mode */
uint32_t erase_gran; /**< erase granularity (bytes) */
uint8_t erase_gran_cmd; /**< erase granularity size block command */
} flash_chip;
#ifdef FLASH_USING_QSPI
/* QSPI flash chip's extended information compared with SPI flash */
typedef struct {
uint8_t mf_id; /**< manufacturer ID */
uint8_t type_id; /**< memory type ID */
uint8_t capacity_id; /**< capacity ID */
uint8_t read_mode; /**< supported read mode on this qspi flash chip */
} flash_qspi_flash_ext_info;
#endif
/* FLASH support manufacturer JEDEC ID */
#define FLASH_MF_ID_CYPRESS 0x01
#define FLASH_MF_ID_FUJITSU 0x04
#define FLASH_MF_ID_EON 0x1C
#define FLASH_MF_ID_ATMEL 0x1F
#define FLASH_MF_ID_MICRON 0x20
#define FLASH_MF_ID_AMIC 0x37
#define FLASH_MF_ID_NOR_MEM 0x52
#define FLASH_MF_ID_SANYO 0x62
#define FLASH_MF_ID_INTEL 0x89
#define FLASH_MF_ID_ESMT 0x8C
#define FLASH_MF_ID_FUDAN 0xA1
#define FLASH_MF_ID_HYUNDAI 0xAD
#define FLASH_MF_ID_SST 0xBF
#define FLASH_MF_ID_MACRONIX 0xC2
#define FLASH_MF_ID_GIGADEVICE 0xC8
#define FLASH_MF_ID_ISSI 0xD5
#define FLASH_MF_ID_WINBOND 0xEF
#define FLASH_MF_ID_PUYA 0x85
/* FLASH supported manufacturer information table */
#define FLASH_MF_TABLE \
{ \
{"Cypress", FLASH_MF_ID_CYPRESS}, \
{"Fujitsu", FLASH_MF_ID_FUJITSU}, \
{"EON", FLASH_MF_ID_EON}, \
{"Atmel", FLASH_MF_ID_ATMEL}, \
{"Micron", FLASH_MF_ID_MICRON}, \
{"AMIC", FLASH_MF_ID_AMIC}, \
{"Sanyo", FLASH_MF_ID_SANYO}, \
{"Intel", FLASH_MF_ID_INTEL}, \
{"ESMT", FLASH_MF_ID_ESMT}, \
{"Fudan", FLASH_MF_ID_FUDAN}, \
{"Hyundai", FLASH_MF_ID_HYUNDAI}, \
{"SST", FLASH_MF_ID_SST}, \
{"GigaDevice", FLASH_MF_ID_GIGADEVICE}, \
{"ISSI", FLASH_MF_ID_ISSI}, \
{"Winbond", FLASH_MF_ID_WINBOND}, \
{"Macronix", FLASH_MF_ID_MACRONIX}, \
{"NOR-MEM", FLASH_MF_ID_NOR_MEM}, \
{"PUYA", FLASH_MF_ID_PUYA}, \
}
#ifdef FLASH_USING_FLASH_INFO_TABLE
/* FLASH supported flash chip information table. If the flash not support JEDEC JESD216 standard,
* then the FLASH will find the flash chip information by this table. You can add other flash to here then
* notice me for update it. The configuration information name and index reference the flash_flash_chip structure.
* | name | mf_id | type_id | capacity_id | capacity | write_mode | erase_gran | erase_gran_cmd |
*/
#define FLASH_FLASH_CHIP_TABLE \
{ \
{"AT45DB161E", FLASH_MF_ID_ATMEL, 0x26, 0x00, 2L*1024L*1024L, FLASH_WM_BYTE|FLASH_WM_DUAL_BUFFER, 512, 0x81}, \
{"W25Q40BV", FLASH_MF_ID_WINBOND, 0x40, 0x13, 512L*1024L, FLASH_WM_PAGE_256B, 4096, 0x20}, \
{"W25X40CL", FLASH_MF_ID_WINBOND, 0x30, 0x13, 512L*1024L, FLASH_WM_PAGE_256B, 4096, 0x20}, \
{"W25X16AV", FLASH_MF_ID_WINBOND, 0x30, 0x15, 2L*1024L*1024L, FLASH_WM_PAGE_256B, 4096, 0x20}, \
{"W25Q16BV", FLASH_MF_ID_WINBOND, 0x40, 0x15, 2L*1024L*1024L, FLASH_WM_PAGE_256B, 4096, 0x20}, \
{"W25Q32BV", FLASH_MF_ID_WINBOND, 0x40, 0x16, 4L*1024L*1024L, FLASH_WM_PAGE_256B, 4096, 0x20}, \
{"W25Q64CV", FLASH_MF_ID_WINBOND, 0x40, 0x17, 8L*1024L*1024L, FLASH_WM_PAGE_256B, 4096, 0x20}, \
{"W25Q64DW", FLASH_MF_ID_WINBOND, 0x60, 0x17, 8L*1024L*1024L, FLASH_WM_PAGE_256B, 4096, 0x20}, \
{"W25Q128BV", FLASH_MF_ID_WINBOND, 0x40, 0x18, 16L*1024L*1024L, FLASH_WM_PAGE_256B, 4096, 0x20}, \
{"W25Q256FV", FLASH_MF_ID_WINBOND, 0x40, 0x19, 32L*1024L*1024L, FLASH_WM_PAGE_256B, 4096, 0x20}, \
{"SST25VF080B", FLASH_MF_ID_SST, 0x25, 0x8E, 1L*1024L*1024L, FLASH_WM_BYTE|FLASH_WM_AAI, 4096, 0x20}, \
{"SST25VF016B", FLASH_MF_ID_SST, 0x25, 0x41, 2L*1024L*1024L, FLASH_WM_BYTE|FLASH_WM_AAI, 4096, 0x20}, \
{"M25P32", FLASH_MF_ID_MICRON, 0x20, 0x16, 4L*1024L*1024L, FLASH_WM_PAGE_256B, 64L*1024L, 0xD8}, \
{"M25P80", FLASH_MF_ID_MICRON, 0x20, 0x14, 1L*1024L*1024L, FLASH_WM_PAGE_256B, 64L*1024L, 0xD8}, \
{"M25P40", FLASH_MF_ID_MICRON, 0x20, 0x13, 512L*1024L, FLASH_WM_PAGE_256B, 64L*1024L, 0xD8}, \
{"EN25Q32B", FLASH_MF_ID_EON, 0x30, 0x16, 4L*1024L*1024L, FLASH_WM_PAGE_256B, 4096, 0x20}, \
{"GD25Q64B", FLASH_MF_ID_GIGADEVICE, 0x40, 0x17, 8L*1024L*1024L, FLASH_WM_PAGE_256B, 4096, 0x20}, \
{"GD25Q16B", FLASH_MF_ID_GIGADEVICE, 0x40, 0x15, 2L*1024L*1024L, FLASH_WM_PAGE_256B, 4096, 0x20}, \
{"GD25Q32C", FLASH_MF_ID_GIGADEVICE, 0x40, 0x16, 4L*1024L*1024L, FLASH_WM_PAGE_256B, 4096, 0x20}, \
{"S25FL216K", FLASH_MF_ID_CYPRESS, 0x40, 0x15, 2L*1024L*1024L, FLASH_WM_PAGE_256B, 4096, 0x20}, \
{"S25FL032P", FLASH_MF_ID_CYPRESS, 0x02, 0x15, 4L*1024L*1024L, FLASH_WM_PAGE_256B, 4096, 0x20}, \
{"A25L080", FLASH_MF_ID_AMIC, 0x30, 0x14, 1L*1024L*1024L, FLASH_WM_PAGE_256B, 4096, 0x20}, \
{"F25L004", FLASH_MF_ID_ESMT, 0x20, 0x13, 512L*1024L, FLASH_WM_BYTE|FLASH_WM_AAI, 4096, 0x20}, \
{"PCT25VF016B", FLASH_MF_ID_SST, 0x25, 0x41, 2L*1024L*1024L, FLASH_WM_BYTE|FLASH_WM_AAI, 4096, 0x20}, \
{"NM25Q128EVB", FLASH_MF_ID_NOR_MEM, 0x21, 0x18, 16L*1024L*1024L, FLASH_WM_PAGE_256B, 4096, 0x20}, \
{"P25D05H", FLASH_MF_ID_PUYA, 0x60, 0x13, 5L*1024L, FLASH_WM_PAGE_256B, 4096, 0x20}, \
{"P25D10H", FLASH_MF_ID_PUYA, 0x60, 0x12, 1L*1024L*1024L, FLASH_WM_PAGE_256B, 4096, 0x20}, \
{"P25D20H", FLASH_MF_ID_PUYA, 0x60, 0x11, 2L*1024L*1024L, FLASH_WM_PAGE_256B, 4096, 0x20}, \
{"P25D40H", FLASH_MF_ID_PUYA, 0x60, 0x10, 4L*1024L*1024L, FLASH_WM_PAGE_256B, 4096, 0x20}, \
{"P25Q80H", FLASH_MF_ID_PUYA, 0x30, 0x14, 8L*1024L*1024L, FLASH_WM_PAGE_256B, 4096, 0x20}, \
}
#endif /* FLASH_USING_FLASH_INFO_TABLE */
#ifdef FLASH_USING_QSPI
/* This table saves flash read-fast instructions in QSPI mode,
* FLASH can use this table to select the most appropriate read instruction for flash.
* | mf_id | type_id | capacity_id | qspi_read_mode |
*/
#define FLASH_FLASH_EXT_INFO_TABLE \
{ \
/* W25Q40BV */ \
{FLASH_MF_ID_WINBOND, 0x40, 0x13, NORMAL_SPI_READ|DUAL_OUTPUT}, \
/* W25Q80JV */ \
{FLASH_MF_ID_WINBOND, 0x40, 0x14, NORMAL_SPI_READ|DUAL_OUTPUT}, \
/* W25Q16BV */ \
{FLASH_MF_ID_WINBOND, 0x40, 0x15, NORMAL_SPI_READ|DUAL_OUTPUT}, \
/* W25Q32BV */ \
{FLASH_MF_ID_WINBOND, 0x40, 0x16, NORMAL_SPI_READ|DUAL_OUTPUT|QUAD_OUTPUT|QUAD_IO}, \
/* W25Q64JV */ \
{FLASH_MF_ID_WINBOND, 0x40, 0x17, NORMAL_SPI_READ|DUAL_OUTPUT|DUAL_IO|QUAD_OUTPUT|QUAD_IO}, \
/* W25Q128JV */ \
{FLASH_MF_ID_WINBOND, 0x40, 0x18, NORMAL_SPI_READ|DUAL_OUTPUT|DUAL_IO|QUAD_OUTPUT|QUAD_IO}, \
/* W25Q256FV */ \
{FLASH_MF_ID_WINBOND, 0x40, 0x19, NORMAL_SPI_READ|DUAL_OUTPUT|DUAL_IO|QUAD_OUTPUT|QUAD_IO}, \
/* EN25Q32B */ \
{FLASH_MF_ID_EON, 0x30, 0x16, NORMAL_SPI_READ|DUAL_OUTPUT|QUAD_IO}, \
/* S25FL216K */ \
{FLASH_MF_ID_CYPRESS, 0x40, 0x15, NORMAL_SPI_READ|DUAL_OUTPUT}, \
/* A25L080 */ \
{FLASH_MF_ID_AMIC, 0x30, 0x14, NORMAL_SPI_READ|DUAL_OUTPUT|DUAL_IO}, \
/* A25LQ64 */ \
{FLASH_MF_ID_AMIC, 0x40, 0x17, NORMAL_SPI_READ|DUAL_OUTPUT|DUAL_IO|QUAD_IO}, \
/* MX25L3206E and KH25L3206E */ \
{FLASH_MF_ID_MACRONIX, 0x20, 0x16, NORMAL_SPI_READ|DUAL_OUTPUT}, \
/* MX25L51245G */ \
{FLASH_MF_ID_MACRONIX, 0x20, 0x1A, NORMAL_SPI_READ|DUAL_OUTPUT|DUAL_IO|QUAD_OUTPUT|QUAD_IO}, \
/* GD25Q64B */ \
{FLASH_MF_ID_GIGADEVICE, 0x40, 0x17, NORMAL_SPI_READ|DUAL_OUTPUT}, \
/* NM25Q128EVB */ \
{FLASH_MF_ID_NOR_MEM, 0x21, 0x18, NORMAL_SPI_READ|DUAL_OUTPUT|DUAL_IO|QUAD_OUTPUT|QUAD_IO}, \
}
#endif /* FLASH_USING_QSPI */
/**
* retry process
*
* @param delay delay function for every retry. NULL will not delay for every retry.
* @param retry retry counts
* @param result FLASH_ERR_TIMEOUT: retry timeout
*/
#define FLASH_RETRY_PROCESS(delay, retry, result) \
void (*__delay_temp)(void) = (void (*)(void))delay; \
if (retry == 0) {result = FLASH_ERR_TIMEOUT;break;} \
else {if (__delay_temp) {__delay_temp();} retry --;}
/* software version number */
#define FLASH_SW_VERSION "1.1.0"
/*
* all defined supported command
*/
#ifndef FLASH_CMD_WRITE_ENABLE
#define FLASH_CMD_WRITE_ENABLE 0x06
#endif
#ifndef FLASH_CMD_WRITE_DISABLE
#define FLASH_CMD_WRITE_DISABLE 0x04
#endif
#ifndef FLASH_CMD_READ_STATUS_REGISTER
#define FLASH_CMD_READ_STATUS_REGISTER 0x05
#endif
#ifndef FLASH_VOLATILE_SR_WRITE_ENABLE
#define FLASH_VOLATILE_SR_WRITE_ENABLE 0x50
#endif
#ifndef FLASH_CMD_WRITE_STATUS_REGISTER
#define FLASH_CMD_WRITE_STATUS_REGISTER 0x01
#endif
#ifndef FLASH_CMD_PAGE_PROGRAM
#define FLASH_CMD_PAGE_PROGRAM 0x02
#endif
#ifndef FLASH_CMD_AAI_WORD_PROGRAM
#define FLASH_CMD_AAI_WORD_PROGRAM 0xAD
#endif
#ifndef FLASH_CMD_ERASE_CHIP
#define FLASH_CMD_ERASE_CHIP 0xC7
#endif
#ifndef FLASH_CMD_READ_DATA
#define FLASH_CMD_READ_DATA 0x03
#endif
#ifndef FLASH_CMD_FAST_READ_DATA
#define FLASH_CMD_FAST_READ_DATA 0x0B
#endif
#ifndef FLASH_CMD_DUAL_OUTPUT_READ_DATA
#define FLASH_CMD_DUAL_OUTPUT_READ_DATA 0x3B
#endif
#ifndef FLASH_CMD_DUAL_IO_READ_DATA
#define FLASH_CMD_DUAL_IO_READ_DATA 0xBB
#endif
#ifndef FLASH_CMD_QUAD_IO_READ_DATA
#define FLASH_CMD_QUAD_IO_READ_DATA 0xEB
#endif
#ifndef FLASH_CMD_QUAD_OUTPUT_READ_DATA
#define FLASH_CMD_QUAD_OUTPUT_READ_DATA 0x6B
#endif
#ifndef FLASH_CMD_MANUFACTURER_DEVICE_ID
#define FLASH_CMD_MANUFACTURER_DEVICE_ID 0x90
#endif
#ifndef FLASH_CMD_JEDEC_ID
#define FLASH_CMD_JEDEC_ID 0x9F
#endif
#ifndef FLASH_CMD_READ_UNIQUE_ID
#define FLASH_CMD_READ_UNIQUE_ID 0x4B
#endif
#ifndef FLASH_CMD_READ_SFDP_REGISTER
#define FLASH_CMD_READ_SFDP_REGISTER 0x5A
#endif
#ifndef FLASH_CMD_ENABLE_RESET
#define FLASH_CMD_ENABLE_RESET 0x66
#endif
#ifndef FLASH_CMD_RESET
#define FLASH_CMD_RESET 0x99
#endif
#ifndef FLASH_CMD_ENTER_4B_ADDRESS_MODE
#define FLASH_CMD_ENTER_4B_ADDRESS_MODE 0xB7
#endif
#ifndef FLASH_CMD_EXIT_4B_ADDRESS_MODE
#define FLASH_CMD_EXIT_4B_ADDRESS_MODE 0xE9
#endif
#ifndef FLASH_WRITE_MAX_PAGE_SIZE
#define FLASH_WRITE_MAX_PAGE_SIZE 256
#endif
/* send dummy data for read data */
#ifndef FLASH_DUMMY_DATA
#define FLASH_DUMMY_DATA 0xFF
#endif
/* dummy data count for fast read data and etc */
#ifndef FLASH_READ_DUMMY_BYTE_CNT
#ifdef FLASH_USING_FAST_READ
#define FLASH_READ_DUMMY_BYTE_CNT 1
#else
#define FLASH_READ_DUMMY_BYTE_CNT 0
#endif
#endif
/* maximum number of erase type support on JESD216 (V1.0) */
#define FLASH_SFDP_ERASE_TYPE_MAX_NUM 4
/**
* status register bits
*/
enum {
FLASH_STATUS_REGISTER_BUSY = (1 << 0), /**< busing */
FLASH_STATUS_REGISTER_WEL = (1 << 1), /**< write enable latch */
FLASH_STATUS_REGISTER_SRP = (1 << 7), /**< status register protect */
};
/**
* error code
*/
typedef enum {
FLASH_SUCCESS = 0, /**< success */
FLASH_ERR_NOT_FOUND = 1, /**< not found or not supported */
FLASH_ERR_WRITE = 2, /**< write error */
FLASH_ERR_READ = 3, /**< read error */
FLASH_ERR_TIMEOUT = 4, /**< timeout error */
FLASH_ERR_ADDR_OUT_OF_BOUND = 5, /**< address is out of flash bound */
} flash_err;
#ifdef FLASH_USING_QSPI
/**
* QSPI flash read cmd format
*/
typedef struct {
uint8_t instruction;
uint8_t instruction_lines;
uint8_t address_size;
uint8_t address_lines;
uint8_t alternate_bytes_lines;
uint8_t dummy_cycles;
uint8_t data_lines;
} flash_qspi_read_cmd_format;
#endif /* FLASH_USING_QSPI */
/* SPI bus write read data function type */
typedef flash_err (*spi_write_read_func)(const uint8_t *write_buf, size_t write_size, uint8_t *read_buf,
size_t read_size);
#ifdef FLASH_USING_SFDP
/**
* the SFDP (Serial Flash Discoverable Parameters) parameter info which used on this library
*/
typedef struct {
bool available; /**< available when read SFDP OK */
uint8_t major_rev; /**< SFDP Major Revision */
uint8_t minor_rev; /**< SFDP Minor Revision */
uint16_t write_gran; /**< write granularity (bytes) */
uint8_t erase_4k; /**< 4 kilobyte erase is supported throughout the device */
uint8_t erase_4k_cmd; /**< 4 Kilobyte erase command */
bool sr_is_non_vola; /**< status register is supports non-volatile */
uint8_t vola_sr_we_cmd; /**< volatile status register write enable command */
bool addr_3_byte; /**< supports 3-Byte addressing */
bool addr_4_byte; /**< supports 4-Byte addressing */
uint32_t capacity; /**< flash capacity (bytes) */
struct {
uint32_t size; /**< erase sector size (bytes). 0x00: not available */
uint8_t cmd; /**< erase command */
} eraser[FLASH_SFDP_ERASE_TYPE_MAX_NUM]; /**< supported eraser types table */
//TODO lots of fast read-related stuff (like modes supported and number of wait states/dummy cycles needed in each)
} flash_sfdp, *flash_sfdp_t;
#endif
/**
* SPI device
*/
typedef struct __flash_spi {
/* SPI device name */
char *name;
/* SPI bus write read data function */
flash_err (*wr)(const struct __flash_spi *spi, const uint8_t *write_buf, size_t write_size, uint8_t *read_buf,
size_t read_size);
#ifdef FLASH_USING_QSPI
/* QSPI fast read function */
flash_err
(*qspi_read)(const struct __flash_spi *spi, uint32_t addr, flash_qspi_read_cmd_format *qspi_read_cmd_format,
uint8_t *read_buf, size_t read_size);
#endif
/* lock SPI bus */
void (*lock)(const struct __flash_spi *spi);
/* unlock SPI bus */
void (*unlock)(const struct __flash_spi *spi);
/* some user data */
void *user_data;
} flash_spi, *flash_spi_t;
#ifdef __cplusplus
}
#endif
#endif //HW_LIB_FLASH_DEF_H